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ABSTRACT
Surface haptic technology reintegrates the sense of touch into

virtual interactions on touchscreen devices, enhancing social in-
teractions, educational tools, and daily screen tasks. Despite its
clear benefits, this technology remains niche and guidelines for
designing diverse and compelling touch sensations are lacking.
The ability to easily generate content for and the existence of
an established library of unique sensations and interactions may
make the adoption of this technology more appealing to the av-
erage touchscreen user and for a broader range of mainstream
applications. This study looks at the potential for parameter-
driven reaction-diffusion algorithms to generate distinct, user-
adjustable, and responsive texture stimuli.

Our user study investigating the perceived dissimilarity of a
representative set of reaction-diffusion textures found that there is
limited potential for reaction-diffusion textures in virtual texture
spaces when using a friction-modulating display as the deliv-
ery platform, as perceived dissimilarity has a weak association
with both control parameters. Control parameters had a stronger
association with similarity ratings for real 3D printed textures,
suggesting that Turing patterns are more suitable to diverse and
intentional texture generation for alternative haptic surface dis-
plays (e.g. shape displays).

These results can inform how reaction-diffusion algorithms
can be best leveraged to contribute to visual or tactile texture
generation pipelines and spaces.
Keywords: Texture perception, Reaction-diffusion,
Multi-dimensional scaling analysis

1. INTRODUCTION
One of the most common experiences involving tactile feed-

back when evaluating an object or environment is through the
interpretation of textures. Due to increasing dependencies on
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touchscreen technologies and digital platforms as a primary mode
of social communication, this way of interacting with spaces has
been neglected. When considering practical applications, the
lack of high-resolution tactile feedback means that a promising
method of encoding information on digital platforms is unreal-
ized.

There are a few methods for conveying virtual haptic tex-
ture information, including friction modulation or vibrotactile
feedback. While these technologies show promise in reintroduc-
ing highly realistic textures onto digital platforms, they, and the
methods used to generate these textures, lack mainstream imple-
mentations and are generally inaccessible to average touchscreen
users. This may create a sort of issue where the technology is
difficult to adopt because content-creation using the technology
is so inaccessible, limiting its usefulness to haptic experts with
access to the equipment, expertise, and resources necessary to
make tactile graphics.

This paper presents a pipeline by which users can create
parameter-driven tactile textures using a reaction-diffusion algo-
rithm, which is the mechanism by which Turing patterns emerge.
As a basis for how cellular organisms and natural patterns orga-
nize themselves, we hypothesized that reaction-diffusion might
be an accessible method by which a breadth of highly distinct
textures could be generated. However, we first needed to verify
the physical and virtual design spaces in which reaction-diffusion
textures span to assess whether it was practical or possible to
map the controllable parameters to intuitive tactile analogs (e.g.,
smoothness-roughness).

We conducted a human-subject study in which participants
rated the dissimilarity of a series of textures that spanned a rep-
resentative range of possible reaction-diffusion outputs. Our
study examines three possible implementations of these reaction-
diffusion textures to determine the breadth of the resultant design
spaces and the efficacy of using the algorithm for texture content
generation. These three implementations include:

• Perception of a texture when using visual feedback.
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• Perception of a physical texture when using tactile feed-
back.

• Perception of a virtual texture when using tactile feedback.

These implementations isolate individual senses to assess
the potential of reaction-diffusion textures to convey informa-
tion using only visual or only tactile feedback and the space and
dimensions they span using those different feedback modes.

We believe that parameter-driven textures have the potential
to make content generation easier for the end user, respond to
user behaviors, and expand the library of available textures in the
virtual texture design space. Ultimately, we want to establish the
appropriateness of reaction-diffusion textures for this application
and recommend how they can be used in this space.

2. BACKGROUND
Our work is informed by broader research into methods for

generating unique, engaging, and responsive haptic sensations
on surface haptic displays. This work is primarily inspired by
existing research in different virtual texture generation methods
and the perceptual spaces in which these textures span.

2.1. Texture Generation Methods
Virtual textures can be prepared by mechanical measure-

ments of texture topology information when traced by an inter-
mediary tool [1–4] or the fingertip [5, 6] using force, acceleration
data, or displacement measurements of the tool along the surface.
Highly realistic texture data often require mechanical measure-
ment equipment that would be prohibitively expensive and/or
require expert assistance. To avoid this, it is possible to gener-
ate novel textures by interpolating or modifying existing texture
data [1, 3]; but these methods of generating textures require those
initial measurements and do not necessarily adapt to user behav-
ior; that is, these textures cannot adapt to variable swipe speed,
force, or direction-–behaviors that can significantly vary the im-
pression of a texture during tactile exploration [7]. In contrast to
textures generated using mechanical measurements, some proce-
durally generated textures can be created at runtime and thus can
change in response to user behavior. These types of texture graph-
ics have previously been generated using noise [8] or stochastic
models [9, 10]. An opportunity to contribute to this growing
library of parameter-driven textures is using parameter-driven
“reaction-diffusion” textures, which may represent an accessible
texture generation pipeline capable of creating distinct textures in
mono-visual and -tactile contexts.

2.2. Reaction Diffusion Textures
Reaction-diffusion patterns were first described in Alan Tur-

ing’s seminal article describing the mechanisms by which biologi-
cal patterns emerge [11]. These “Turing patterns” are observable
across a range of natural phenomena (e.g., reptile scales [12],
sand dunes [13], and zebrafish scale patterns [14]). Not only are
these Turing patterns present in real-life natural phenomena, but
they are also notable in that they are generally parameter-driven,
uniform, and isotropic. In tactile texture generation, they would
feel the same regardless of swipe direction, which implies that

they are readily distinguishable and identifiable, meaning that
they can be used as discrete markers in virtual graphics. In a
design context, Turing patterns have been used to enhance the
aesthetics of 3-D models [15] and have demonstrated promise for
use as a template for engineering materials and composites [16].
Reaction-diffusion textures have previously been used to enhance
graphics on visual [17, 18] and haptic displays [19]. However,
they have not been independently evaluated by the breadth of dis-
tinguishable textures they can support on these displays. We want
to take advantage of the role of reaction-diffusion as a biological
process by which natural textures are formed to generate recog-
nizable, dynamic, and interesting textures on a haptic display.

2.3. Perceptual Space
Defining the perceptual space in which a set of textures ex-

ists allows us to visualize how distinguishable textures are within
a space. A perceptual space is the n-dimensional space that
defines the variability between stimuli delivered through some
mode of sensory feedback. For haptic feedback, several per-
ceptual dimensions define how individuals interpret and assess
texture, around 4-5 [20]. Roughness-smoothness and hardness-
softness are the most critical of these dimensions and were first
identified using multi-dimensional scaling (MDS) analysis [21].
MDS analysis is a well-established method for deriving a percep-
tual space using either clustering methods [22, 23] or pairwise
comparisons [24, 25] of texture stimuli. In this study, we want
to understand the perceptual space in which reaction-diffusion
textures span and to what extent. Additionally, we want to see
if there is any clear relationship between the textures’ perceptual
dimensions and the parameters used to generate those textures.

3. METHODS AND MATERIALS
3.1. Experimental Configuration

The experimental platform consists of a friction-modulated
screen (Tanvas) that acts as a tactile platform, stage, and external
monitor for the three rendering methods evaluated in this study.
These methods are described in the following list:

• Virtual Textures, where the eight textures were rendered
on a commercial friction-modulating screen and scanned
using the dominant hand’s index finger.

• Physical textures, where the eight textures were presented
as 3-D printed textures mounted on the surface and scanned
using the dominant hand’s index finger.

• Visual textures, where the eight textures were presented
using a slide show on the screen and visually inspected by
the participant.

An acrylic stencil was laser-cut and adhered to the surface of
the friction-modulating screen to help the user locate the virtual
textures and act as a reservoir to nest the physical textures within.
A visualization of the experimental setup is presented in Figure 4.

3.2. Texture Generation and Sample Manufacturing
The texture generation algorithm used in this study was based

on the Gray-Scott model for understanding autocatalytic feed-
back in chemical reactors [27]. In 1993, Pearson [28] expanded
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FIGURE 1: TEXTURE GENERATION PROCESS. (A) AN INITIAL SET OF 50 STARTING POINTS WAS USED TO GENERATE A SEED
IMAGE, WHICH WAS THEN EMPLOYED IN THE GRAY-SCOTT MODEL TO PRODUCE EIGHT DISTINCT TEXTURES. (B) EXAMPLE
OF A 2D TEXTURE IMAGE GENERATED USING THE GRAY-SCOTT REACTION-DIFFUSION MODEL. (C) 3D MODEL CREATED IN
MATLAB. (D) 3D MODEL WITH A BASEBOARD DESIGNED IN FUSION 360. (E) PHYSICAL TEXTURE FABRICATED VIA A RESIN
3D PRINTER.

the model’s relevance to spatial self-organization, demonstrat-
ing how nonlinear interactions and finite perturbations generate
complex, self-sustaining patterns. In this work, we constrained
our stimulus set to 8 textures, generated from only 2 adjustable
parameters (feed and kill rate). These limits ensured a small
enough set of stimuli to ensure quality comparisons without fa-
tiguing participants, while covering a wide range of parameter
values to determine relationships between a given parameter and
perceptual change.

The process of generating Gray-Scott reaction-diffusion tex-
tures involves three steps (see Figure 1): (i) initializing chemical
concentrations, (ii) applying the Gray-Scott update formula, and
(iii) converting the 2D texture image into a 3D model. For the
first step, we implemented the Poisson disc sampling algorithm
to generate random points in a space such that no two points are
closer than a specified minimum distance. The minimum distance
constraint is enforced using the Euclidean metric:

𝑑 (p𝑖 , p𝑗 ) =
√︂
(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 ≥ 𝑟, (1)

where p𝑖 = (𝑥𝑖 , 𝑦𝑖) and p𝑗 = (𝑥𝑗 , 𝑦𝑗 ) are distinct points in the
sampling domain, and 𝑟 is the minimum separation radius. We
initialized 50 starting points and mapped them to a 400×400 grid
with a radius of 64 grid units to generate a default seed image,
which was then employed in the Gray-Scott model to produce
eight distinct isotropic textures. For each starting point, a square
region of radius 𝑟, defaulting to 15 grid units, was defined to
create localized disturbances (see Figure 1a).

Next, we integrated these initial conditions into the Gray-
Scott reaction-diffusion model. This system describes the inter-
action between two chemicals, 𝐴 and 𝐵, which diffuse and react
according to:

𝜕𝐴

𝜕𝑡
= 𝐷𝐴∇2𝐴 − 𝐴𝐵2 + 𝑓 (1 − 𝐴),

𝜕𝐵

𝜕𝑡
= 𝐷𝐵∇2𝐵 + 𝐴𝐵2 − ( 𝑓 + 𝑘)𝐵,

(2)

where 𝐴(𝑥, 𝑦, 𝑡) and 𝐵(𝑥, 𝑦, 𝑡) represent chemical concentrations,
𝐷𝐴 and 𝐷𝐵 are diffusion coefficients, 𝑓 is the feed rate, 𝑘 is the
kill rate, and ∇2 is the Laplacian operator. The discrete Laplace
operator was approximated using a five-point stencil:

∇2𝑀𝑖 𝑗 ≈
1
ℎ2

[︁
𝑀𝑖+1, 𝑗 + 𝑀𝑖−1, 𝑗 + 𝑀𝑖, 𝑗+1 + 𝑀𝑖, 𝑗−1 − 4𝑀𝑖 𝑗

]︁
, (3)

where ℎ is the grid spacing (set to 1 in pixel-based simulations).
The generated textures depend primarily on the feed ( 𝑓 ) and

kill rate (𝑘) parameters. All other parameters were kept constant:
𝐷𝐴 = 0.14 and 𝐷𝐵 = 0.07 based on the suggestion from [26],
The simulation ran for 40,000 iterations to ensure that all texture
images were stable, using the same seed image with 50 starting
points to guarantee isotropic textures. The adjusted feed ( 𝑓 ) and
kill rate (𝑘) parameters were carefully distributed throughout the
K-F log curve in the phase diagram of the isotropic Gray-Scott
model to generate a set of 8 distinct texture images (see Figure
2). The resultant textures were uniform, periodic, and isotropic
grayscale patterns.

The final step involved converting 2D texture images into 3D
printable models to enable tactile evaluation by participants. The
workflow (Figure 1c) began by storing the 2D texture heightmap
as a matrix in a CSV file, which was then scaled to physical dimen-
sions of 70×70×1 mm. A triangular surface mesh was generated
via Delaunay triangulation on the gridded 𝑋-𝑌 coordinates, with
𝑍-values defining vertex heights. This triangulation was exported
as a text-based STL file using MATLAB’s triangulation and
stlwrite functions. To ensure printability, the STL file was
imported into Fusion 360, where an 80 × 80 × 6 mm baseboard
was added beneath the texture. The finalized model was fabri-
cated using a clear photopolymer resin on a Formlabs Form 4
stereolithography (SLA) 3D printer (see Figure 1e and Figure 3).

3.3. Data Analysis
We collected pairwise dissimilarity ratings between texture

stimuli to assess the breadth of distinct textures that reaction-
diffusion can generate across different sensory modes. Dissim-
ilarity ratings within each experimental set were normalized to
a 0-1 scale across all subjects to account for each participant’s
subjective rating scale.

The ratings were then arranged into the dissimilarity matri-
ces, which were used as inputs for our NMDS analysis. We used
NMDS because we were interested in the relative distance and re-
lationships between the eight textures. We confirmed goodness-
of-fit using a Kruskal stress curve, identified distinct clusters
using a combination of the NMDS plots and a dendrogram to
clarify them, and then plotted the dissimilarity measures against
the control parameters (i.e., Feed rate, Kill rate).
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FIGURE 2: EIGHT REACTION-DIFFUSION TEXTURES. (A)
PHASE DIAGRAM FOR THE ISOTROPIC GRAY-SCOTT
MODEL, WHERE EIGHT DIFFERENTLY COLORED DOTS
CORRESPOND TO EIGHT UNIQUE REACTION-DIFFUSION
TEXTURES. THE ORIGINAL PLOT IS ADAPTED FROM [26].
(B) PANEL SHOWING THE EIGHT REACTION-DIFFUSION
TEXTURES EVALUATED IN THIS STUDY, INCLUDING THEIR
ASSOCIATED FEED (f ) AND KILL RATE (k ) PARAMETERS.

4. PARTICIPANT STUDY
In this study, a total of 7 participants (4 women, ages 22-

34) were evaluated. This study was approved by the Institutional
Review Board of Texas A&M University (IRB2024-0539), and
participants were compensated for their participation.

4.1. Tactile Acuity Assessment and Training Session
Before the main study, participants were tested on their ability

to discriminate between textures of variable spatial frequency on a
friction-modulating screen and to become familiar with the virtual
texture platform, as most had never interacted with one. This
ensured that they could effectively interpret the surface’s mode of

FIGURE 3: 3D-PRINTED PHYSICAL TEXTURE SAMPLES.
RESIN 3D-PRINTED TEXTURE SAMPLES USED FOR THE
PHYSICAL PERCEPTION MODALITY.

FIGURE 4: EXPERIMENTAL SETUP. (A) TACTILE INTERAC-
TION MODE WITH CURTAIN OBSCURING VIEW OF EXPER-
IMENTAL SETUP. (B) VISUAL INTERACTION MODE WITH
CURTAIN DRAWN TO PROVIDE FULL VIEW OF EXPERIMEN-
TAL SETUP. (C) EXPLORATION OF VIRTUAL TEXTURES US-
ING THE DOMINANT HAND’S INDEX FINGER. (D) EXPLO-
RATION OF PHYSICAL TEXTURES USING THE DOMINANT
HAND’S INDEX FINGER.

tactile feedback. To assess each participant, we generated three
textures with variable spatial frequency (.05, .5, one cycle/pixel)
that were then presented as a series of pairs that participants were
asked to rate in terms of dissimilarity.

In addition to testing tactile acuity for virtual textures, partic-
ipants were briefed on using a free magnitude rating scale, a well-
established method for pairwise comparisons of stimuli [29, 30].
When evaluating each texture pair, participants were instructed to
arbitrarily choose their initial rating and rate all subsequent pairs
relative to this baseline value. Participants were instructed on
how to interact with each texture—that is, they were told to scan
the surface of the tactile texture samples using their dominant
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hand’s index finger. If they tapped on the surface or used more
than one finger, they were corrected by the supervising researcher.
These training textures were not reused at any other point in the
study.

4.2. Dissimilarity Ratings
Participants were randomly assigned one of the three render-

ing methods (visual, virtual, and physical textures). Additionally,
the 28 texture pairs were the same but randomly sorted. When
participants used tactile feedback, an opaque curtain obscured the
experimental platform. For the virtual texture experiment, par-
ticipants were asked to wear noise-canceling headphones playing
pink noise to isolate touch as the primary mode of sensory feed-
back.

Participants were asked to scan two adjacent textures and
rate the dissimilarity of these textures across a series of 28 pairs
of textures for each rendering method. They were asked to ensure
that this rating was greater than zero, but that these ratings could
be as large or small as they wanted. Participants were told that
each initial rating for an experimental set was arbitrary and that
all subsequent ratings would be made as a ratio pair (e.g., if a
subsequent pair is twice as dissimilar, the resultant rating would
be twice as large). For every 10 ratings, they were asked to take a
1-minute break before progressing to the next pair. Between ex-
perimental sets, they were asked to take a 3-minute break. When
each participant completed each set of 28 ratings and progressed
to another rendering method, they were asked to ignore all prior
ratings.

Immediately adjacent to the experimental setup was a laptop
with a GUI for participants to record their dissimilarity ratings
for each texture pair. Once they had successfully evaluated and
rated a texture pair, the supervising researcher exchanged it for
another texture pair and moved on to the next trial. At the end
of the study, each participant evaluated 84 texture pairs across all
three rendering methods.

5. RESULTS
We rendered and manufactured a set of eight distinct textures

using a reaction-diffusion algorithm. We varied two controllable
parameters (the Kill and Feed rates) and held all other variables
constant. The Feed rate (F) refers to the consumption of material
added to the reaction, while the Kill rate (K) refers to the removal
of material generated by the reaction. We wanted to determine
how distinctive each texture was and the relationship between per-
ceived dissimilarity and the two control parameters. Our group
performed three experiments in a psychophysical study to evalu-
ate the breadth of perceptual space these textures occupied across
different modes of interaction.

Participants evaluated the dissimilarity of a set of eight
reaction-diffusion textures using (1) visual evaluation, (2) sliding
touch along a physical texture, and (3) sliding touch on a virtual
texture rendered using a friction-modulating screen. Participants
rated the dissimilarity of each texture pair, and their final ratings
were analyzed using non-metric MDS (NMDS) analysis. The
3-D NMDS plots are visualized in Figure 5. We used these plots
to identify a possible relationship between the control parameters
and perception.

5.1. Perception of Reaction-Diffusion Textures using
Visual Feedback

Inspection of the NMDS data for the experiment using visual
feedback indicates:

• Textures 1-8 appear to form distinct corners of a prism-like
distribution in the 3D NMDS output.

• Textures 8, 6, 4, and 1 form a ’face’. Textures 3, 7, 5, and
2 follow a similar configuration.

• Textures 6 and 4 appear to form a cluster.

• Textures 1 and 8 appear to be outliers.

The textures do not appear to be arranged according to their
reaction-diffusion control parameters, but there seems to be some
relationship between feature size and how dark the image is.
This data is visualized in Figures 5 and 6. The arrangement of
the textures in dimensions 1 and 2 seems to correspond to both
average shade and the presence of distinct shape geometries, with
dimension 1 corresponding to the former and dimension 2 to the
latter. The effects of dimension 3 are less clear but seem related
to the geometries of the embedded features and the space they
occupy.

A dendrogram was used to visualize the groupings and sup-
port these texture grouping assessments; however, it also implies
that there may be a cluster between textures 5 and 7 and a gradient
consisting of textures 4-7. Additionally, it identifies a possible
cluster between 2 and 3. Overall, there is a balanced relationship
between the eight textures, with some weak similarities between
select pairs of textures.

We evaluated the relationship between four different metrics
and the participant dissimilarity ratings. We calculated the 𝑅2

value to determine the strength of the relationship between the
predictors and their response variables. We then calculated the
p-value to determine if the assigned relationship was statistically
significant. For each metric, there is no relationship with the
Kill rate (𝑅2 = 0.0523) and no relationship with the Feed rate
(𝑅2 = 0.0180). A visualization of the relationship between these
different metrics and dissimilarity is shown in Figure 7.

5.2. Perception of Physical Reaction Diffusion
Textures using Tactile Feedback

Inspection of the NMDS data for the experiment using tactile
feedback on a physical surface indicates:

• Textures 1, 2, 3, and 5 seem to form a cluster gradient.

• Textures 3, 5, 6, and 7 seem to form a gradient.

• Textures 6 and 7 seem to form a possible cluster.

• Textures 4 and 8 appear to be outliers.

This data is visualized in Figures 5 and 8. From the 2-D
projections of the 3-D NMDS, Dimension 1 seems to correspond
to the Kill rate. A dendrogram was used to visualize the groupings
and support these texture grouping assessments.
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We evaluated the relationship between two different metrics
and the participant dissimilarity ratings. We calculated the 𝑅2

statistic to measure the relationship between a predictor and re-
sponse variables. We then calculated the p-value to determine
whether the assigned relationship was statistically significant. For
each metric, there is a strong relationship with the Kill rate (𝑅2 =
0.2536) and a weak relationship with the Feed rate (𝑅2 = 0.1011).

A visualization of the relationship between these different
metrics and dissimilarity is shown in Figure 9. The results here
imply that the Kill rate significantly affects the tactile perception
of dissimilarity. This is consistent with how the textures were
clustered in the NMDS data.

5.3. Perception of Virtual Reaction Diffusion Textures
using Tactile Feedback

Inspection of the nonmetric NMDS data for the experiment
using tactile feedback on a virtual surface indicates:

• Textures 1, 2, and 7 seem to form a weak cluster.

• Textures 2 and 7 overlap.

• Textures 6, 4, 3, and 5 follow a dissimilarity gradient.

• Texture 8 is an outlier.

Otherwise, there does not appear to be a clear clustering
of textures, and they seem to be perceived as equally similar
or dissimilar. This data is visualized in Figures 5 and 10. A
dendrogram was used to visualize the groupings and support these
initial texture grouping assessments, but it seems to indicate that
both 1 and 8 are outliers.

We evaluated the relationship between two different met-
rics and the participant dissimilarity ratings. We calculated (1)
the 𝑅2 statistic to determine the strength of the relationship be-
tween a predictor and the response variables and (2) the p-value
to determine whether the assigned relationship was statistically
significant. For each metric, there is a weak relationship with
the Kill rate (𝑅2 = 0.1448) and no relationship with the Feed rate
(𝑅2 = 0.0551). A visualization of the relationship between these
different metrics and dissimilarity is shown in Figure 11.

The overlap of textures 2 and 7; a very weak–but more pre-
cisely organized when compared to the physical textures–gradient
of textures 6, 4, 3, and 5; and the outliers of 1 and 8 indicate that
the feature geometry might also be a factor in similarity judg-
ments. That is, the textures also seem to be organized based on
whether there are distinct geometries (like the curves in textures 2
or 7) or if there are clusters of dots (like the cluster gradient with
textures 3-6). As for how the outliers could be differentiated, tex-
ture 1 has large and distinct shape objects, and 8 is a non-binary
texture–that is, it has a gradient of friction values that can readily
distinguish it from the other textures.

6. DISCUSSION
We studied the visual and tactile perception of dissimilarity

between textures generated using a reaction-diffusion algorithm.
Our goal was to determine whether there is a direct link between
the parameters that control the makeup of a reaction-diffusion
texture and some perceptual dimension. We also wanted to deter-
mine whether the resultant textures were dissimilar enough to be
individually identified (i.e., if they covered a significant breadth
of the sensory modes’ perceptual space).
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6.1. Perception of Reaction-Diffusion Textures using
Visual Feedback

When participants evaluated the texture patterns using vi-
sion, there there was no relationship between the controllable
parameters and their dissimilarity assessments. This indicates
that the controllable parameters, in this case, are not well suited
for adjusting texture properties along some perceptual dimension
due to the absence of a clear relationship between the main asses-
sors of dissimilarity and those parameters. Several participants
commented on the overall shade of the textures and feature sizes,
suggesting relevant parameters for future analysis.

6.2. Perception of Reaction-Diffusion Textures using
Tactile Feedback

When participants used tactile feedback during sliding touch
on physical smaples, we found a strong relationship between
tactile perception of dissimilarity and the Kill rate and a weak
relationship between tactile perception of dissimilarity and the
Feed rate.A weaker, but still present, relationship between the
Kill rate and dissimilarity was observed with the virtual friction-
modulated textures. These results indicate that the control pa-
rameters effectively and predictably affect user perception of dis-
similarity during sliding touch, but that this relationship is more
subtle on virtual surfaces. Larger changes in both parameters
may be necessary to create tactilely distinct textures when using
friction modulation as a feedback mode.
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FIGURE 8: PHYSICAL NMDS RESULTS. A 2-D PROJECTION
OF THE 3-D NMDS RESULTS WAS USED TO VERIFY THE
PRESENCE OF CLUSTERS AND GRADIENTS ALONG THE
DIFFERENT DIMENSIONS. A DENDROGRAM WAS USED TO
VERIFY IDENTIFIED CLUSTERS AND THE PRESENCE OF
OUTLIERS, AND A SCREE PLOT WAS USED TO IDENTIFY
THE APPROPRIATE NUMBER OF DIMENSIONS FOR THE
NMDS ANALYSIS.

6.3. Study Limitations and Future Work
Our goal was to determine whether reaction-diffusion algo-

rithms could present a method through which touchscreen users
could control the impression of a texture by adjusting param-
eters that intuitively correspond to some perceptual dimension.
Our results show that this is true for both the physical and virtual
methods of communicating texture information. The relationship
between the reaction-diffusion control parameters and tactile per-
ception of dissimilarity must be more closely examined within a
broader texture library to understand these textures’ perceptual
dimensions.

Another limitation of this study is that we only investigated
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the feed ( 𝑓 ) and kill rates (𝑘) of our reaction-diffusion model.
Several other parameters remain underexplored. For instance,
varying the number of starting points alters the minimum dis-
tance constraints, potentially resulting in anisotropic textures.
Similarly, adjusting the radius of the square region around each
starting point can introduce more or less localized disturbances
in the seed image, thereby influencing the spatial frequency of
the resulting patterns. Additionally, modifying the diffusion co-
efficients (𝐷𝐴 and (𝐷𝐵)) affects the scale of the patterns while
preserving their overall characteristics.

Psychophysical experiments collected coarse information on
whether the textures spanned some perceptual space using NMDS
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FIGURE 11: VIRTUAL SAMPLE METRICS.(A) KILL RATE, (B)
FEED RATE.

and whether there were relationships between the control param-
eters and user perception of dissimilarity. To better understand
the most salient properties of these textures and their relationship
with perception, our future analysis will look for the strength of
different texture features, such as average feature height or spatial
frequency, in predicting texture similarity ratings. These param-
eters for visual textures link directly to features in haptic textures,
such as average height or pattern density. By calculating these
values, we will better understand how our control parameters
influence tactile perception.

Furthermore, we acknowledge that our participant count
(N=7) may limit the statistical significance of our results. Future
work will expand recruitment to strengthen the results reported
in this work.

7. CONCLUSION
This study evaluated the perceptual dimensions in which

parameter-controlled reaction-diffusion textures span three sen-
sory feedback modes. The visual perceptual experiment showed
no dependency on the control parameters when assessing dis-
similarity between textures. In contrast, tactile perception of
dissimilarity for both physical and virtual textures depended on
the control parameters, with the latter being affected more subtly
by differences in the Kill rate parameter.

These results indicate that reaction-diffusion parameters are
well suited for applications on haptic surface displays and that
the different control parameters moderately predict texture per-
ception of dissimilarity for physical and virtual textures. This
makes texture generation more accessible to a wider audience of
designers, as non-expert users can intuitively generate a range
of unique, customizable textures using these parameters. Future
work will look for the most salient perceived features underlying
these design parameters and the relative advantage of reaction-
diffusion for texture generation.
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