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Investigating Passive Presentation Paradigms to
Approximate Active Haptic Palpation

Pijuan Yu1, Luke C. Batteas2, Thomas Ferris3, M. Cynthia Hipwell1, Francis Quek4, and Rebecca F. Friesen1

Abstract—Active, exploratory touch supports human percep-
tion of a broad set of invisible physical surface properties. When
traditionally hands-on tasks, such as medical palpation of soft
tissue, are translated to virtual settings, haptic perception is
throttled by technological limitations, and much of the richness
of active exploration can be lost. The current research seeks
to restore some of this richness with advanced methods of
passively conveying haptic data alongside synchronized visual
feeds. A robotic platform presented haptic stimulation modeled
after the relative motion between a hypothetical physician’s hands
and artificial tissue samples during palpation. Performance in
discriminating the sizes of hidden “tumors” in these samples
was compared across display conditions which included haptic
feedback and either: 1) synchronized video of the participant’s
hand, recorded during active exploration; 2) synchronized video
of another person’s hand; 3) no accompanying video. The
addition of visual feedback did not improve task performance,
which was similar whether receiving relative motion recorded
from one’s own hand or someone else’s. While future research
should explore additional strategies to improve task performance,
this initial attempt to translate active haptic sensations to passive
presentations indicates that visuo-haptic feedback can induce
reliable haptic perceptions of motion in a stationary passive hand.

Index Terms—Multi-modal Systems, Haptic Display, Passive
Perception, Palpation

I. INTRODUCTION

PALPATION is a complex skill performed by health
care professionals that is a fundamental part of modern

medical examination [1]. Palpation exams typically involve
clinicians manually probing patient body locations, such as the
head, neck, or abdomen, with one or both hands. Guided by
expert knowledge and clinical reasoning, practitioners actively
explore the patient’s anatomy, collecting haptic cues that
contribute to medical assessment and decision making. This
activity requires extensive experiential training to master.

The active, manual nature of medical palpation presents
several issues. Firstly, it hampers the use of palpation in
contexts where the patient and caregiver are not co-located,
such as in telehealth settings, thus limiting the benefits that
such exams otherwise offer, particularly to rural or home-
bound patients [2]. Secondly, it prevents medical students

1Pijuan Yu, M. Cynthia Hipwell, and Rebecca F. Friesen are with Depart-
ment of Mechanical Engineering, Texas A&M University, College Station,
Texas. Email: pijuanyu@tamu.edu;

2Luke C. Batteas is with Department of Mechanical Engineering, North-
western University, Evanston, Illinois.

3Thomas Ferris is with Department of Industrial & Systems Engineering,
Texas A&M University, College Station, Texas.

4Francis Quek is with Department of Education, Texas A&M University,
College Station, Texas.

Fig. 1. Passive touch method. Passive presentation of an active task: a
passive user observes video of active hand motion while a 2D robotic platform
recreates the relative motion between the hand and object.

from easily experiencing the haptic sensations produced by
their instructor’s expert palpation; instead, traditional palpation
training relies on a drawn-out process that combines verbal
descriptions of haptic sensations, live demonstrations, and
student practice complemented by individualized feedback [3].

Telehaptic systems – which can capture, transmit, and replay
haptic stimulation – offer potential means to address these
issues facing medical palpation as well as any touch-based
assessment or teaching task. These systems can be configured
to record tactile and kinesthetic sensations of a hands-on task,
then apply the recorded sensations to the stationary hands
of any distant collaborator, supervisor, or student. Such a
paradigm requires as-yet undeveloped technology that must
accurately capture all necessary haptic components of the
touch interaction. More immediately, it is not known whether
people can adequately interpret presented haptic sensations
that are not evoked by their own active movements.

Toward the development of a telehaptic palpation system,
the goal of our study is to explore the fundamental ability
to interpret touch sensations from traditionally active manual
tasks when applied to their passive (i.e. stationary) hands. To
what degree does haptic perception decrease under passive
presentation conditions, and what can be done to mitigate
any reductions in perception? To address these questions, we
applied actively induced sensations to a passive hand by mov-
ing silicone phantoms (fake tissue samples) under the passive
hand. Some presentation conditions included synchronized
visual feedback that showed another person’s hand performing
the active task; see Fig. 1. Hand and finger movement behav-
iors, performance (i.e., accuracy of interpretation of the haptic
cues), and subjective experience measures (such as feelings
of embodiment) were recorded and compared across display
conditions. The results generally show the best performance
for active manual interaction, but illustrate initial successes



2

in our developed system for supporting passive touch and
uncovering new challenges to be addressed in future research.

While the broader research questions are applicable to
haptic perception under passive conditions in a wide variety
of domains, we chose to center our study and task around
medical palpation, given the potential benefits to supporting
telehealth and medical training/education.

A. Haptic Feedback for Palpation

In recent decades, considerable research has been directed
towards providing haptic palpation feedback to medical prac-
titioners and students. When interacting with real patients,
options primarily consist of restoring haptic sensations to a
remote doctor performing active teleoperated palpation [4]–
[6]. Here, a sensorized tool touches the patient and resultant
recorded forces are transmitted to the doctor and applied
via an actuated tool or wearable glove. Haptic feedback for
medical palpation training can be generated via simulations.
These can consist of: (i) physical simulated tissue, often
rubber, providing anatomical likeness and some degree of
haptic feedback [7]–[10]; (ii) virtual reality (VR), employing
pure virtual simulators, incorporating a head-mounted display
(HMD) coupled with haptic devices like a pneumatic haptic
glove [11] or ultrasound system [12]; and (iii) mixed reality
(MR), a hybrid system that amalgamates haptic devices and
virtual media to provide comprehensive feedback [13]–[16].
This research into tele-operated and simulated touch demon-
strates a strong need for alternatives to hands-on palpation. All
of these solutions, however, continue to rely on active touch
interactions. This prevents doctors from experiencing exams
performed asynchronously, or multiple doctors and students
experiencing the same palpation exam. These scenarios could
be facilitated by applying previously-gathered sensations to a
practicioner’s passive hand, presuming they could interpret the
sensations in that context.

B. Passive Haptic Perception

A passive paradigm for palpation training hinges on a
key question: how do people perceive and interpret actively
collected haptic sensations when passively applied to another
hand? Since Gibson’s 1962 article comparing active touch
(touching) and passive touch (being touched) in the perception
of shape, passive perception has attracted significant research
interest [17]. Previous research has demonstrated that human
perception of surface roughness remains intact both in active
and passive touch [18]–[20]. Beyond that, studies also suggest
that passive touch is better than active touch for recognizing
local shapes stimulated by vertical displacements of the finger
[21]. While the aforementioned works repeatedly demonstrate
that human perception remains unchanged in the absence of
active movement, these findings should be further challenged:
these experiments do not replicate the finger’s natural move-
ment while performing active touch, a limitation that fails to
mimic the natural exploratory process of the finger during
active touch.

C. Passive Visio-haptic Perception

In addition to haptic feedback, considerations concerning
visual feedback must also be addressed. Although the diag-
nostic accuracy of palpation primarily depends on haptic cues
rather than visual or auditory ones, conventional palpation
instruction requires practitioners to concentrate on both the
examination area and the patient’s facial expressions [22]. In a
passive touch context, however, providing synchronized visio-
haptic feedback on the palpated region proves challenging
due to limitations of video viewing angles and unpredictable
hand movement. Furthermore, receiving sensory input from
multiple channels may sometimes result in sensory confusion,
as evidenced by studies showing superior performance by the
blind in certain touch-based tasks [23]. Given that palpation
relies more on haptic than visual feedback, there is a need
to ascertain whether synchronous video would enhance tactile
acuity or distract practitioners, consequently affecting diag-
nostic accuracy.

D. Enhancing Passive Touch via Illusions

A potential approach to address the multifaceted challenges
within our passive visuo-haptic feedback system is the appli-
cation of the rubber hand illusion (RHI) theory, specifically
to induce related illusions of agency and ownership. Tradi-
tionally, this psychological phenomenon allows individuals to
perceive an artificial hand as their own through the reception
of passive haptic feedback from a concealed static hand and
visual feedback of analogous physical contact with a visible
artificial rubber/virtual hand [24]. Such an illusion fosters a
more immersive experience within the palpation simulation
environment, potentially mitigating potential distractions.

Recent methodologies for inducing RHI include (i) tac-
tile stimulation, applying synchronous tactile stimuli to both
real and artificial hands [24]–[28]; (ii) passive movements,
involving the synchronous experimenter-induced movements
of both hands [27]–[29]; and (iii) active movements, entailing
the synchronous, participant-induced movements of both the
real and artificial hand [26]–[32]. Active participant move-
ment further provides opportunities to examine sensations of
agency, which can significantly affect the synchrony-induced
ownership illusion [26], [33]. Regardless of methodology, most
extant moving rubber hand illusions demand the synchronous
movements of the participant’s own hand and the artificial
hand [34]. However, no research we know of has explored
whether such an illusion can be triggered in the passive
touch scenario previously described, wherein tactile stimuli are
applied to a subject’s static hand concurrently with a video of
a moving virtual hand executing a palpation procedure.

In addition to the rubber hand illusion, consideration must
be given to the kinesthetic illusion (KI) phenomenon, which
manifests as an illusion of self-body movement without actual
physical motion. This effect is pertinent since the passive touch
mode involves a static hand coupled with video of a moving
hand. Historically, kinesthetic illusions have been induced
through methods such as tendon vibration [35], touch [36], or
visual cues [37], [38]. However, as the conventional induction
methods for kinesthetic illusions—such as the mirror illusion
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paradigm—are not entirely congruent with the passive touch
situation, new understandings must be developed. Uncertainty
still exists concerning whether similar feelings can be induced
if the viewed moving hand is perceived to belong to another
person.

E. Platform for Rendering Passive Palpation Sensations

In order to explore enhancements to passive interpretation
of active haptic tasks such as palpation, we developed a 2D
robotic platform which can record hand movement during
active tasks, then render comparable sensations to a passive
hand via continuous synchronized visual and haptic feedback.
Cutaneous and some kinesthetic feedback arises from the
robotic platform moving stimuli with respect to the stationary
hand, while additional information regarding hand location
is provided by the visual playback of the original active
movement.

We conducted a psychophysical study to observe impacts of
different passive presentation techniques on size discrimination
of tissue-embedded lumps. Our goal was to observe contribu-
tions of different visual and playback options to enhancing
passive perception; therefore, we limited our experiment to a
single task of size discrimination. Future work examining per-
ception of other common palpation features such as stiffness
[39], [40] will likely require implementation of force control
in the robotic platform. Participants were asked to distinguish
different lump sizes in anatomically-inspired tissue phantoms
and report their confidence in making such assessments. This
task was performed both actively and under several differ-
ent passive conditions, and presence of rubber hand illusion
was measured for the passive visuo-haptic conditions. In the
following section we detail construction and operation of
our 2D robotic platform, followed by a discussion of our
psychophysical study.

II. MATERIALS AND METHODS

Our experimental platform for rendering visuo-haptic feed-
back consists of three parts: a rubber tissue phantom con-
structed to mimic human tissue, a 2D platform to move the
phantom with respect to a passive hand, and a monitor to
provide synchronous visual feedback of an active hand moving
with respect to a stationary phantom. In this section, we detail
our design considerations and characterize device behavior.

A. Rubber Tissue Phantom

In order to supply a range of differentiable palpation
sensations, we designed a series of soft tissue phantoms to
closely mimic palpated features in real patients. Specifically,
we focused on phantoms for neck palpation examinations
to detect the thyroid cancer. In order to ensure realistic
feeling phantoms, we consulted with physicians from Houston
Methodist Hospital (see acknowledgements), including an Ear
Nose and Throat specialist, during design and assessment
stages of phantom construction.

Existing phantoms often adopt simplistic shapes such as
cuboids [41]–[45] or truncated cones [5], [46] and are embed-
ded with lumps, usually made from silicone rubber to mimic
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Fig. 2. Soft silicone rubber tissue phantom. (a) Side view. (b) Top view.
(c) Phantom making procedure. (d) three different sizes of lumps.

human skin tissue. However, these phantoms do not adequately
replicate the realistic texture of nodes or glands found in
the neck’s soft tissue. Common materials for these lumps
include plastic materials such as Delrin [42] and resin [45],
which have elastic moduli significantly higher than that of
human thyroid cancer tissue—approximately 3.1 GPa and 2.8
GPa [45], respectively, compared to only 45 kPa for thyroid
cancer tissue [40].

In contrast, our phantoms, depicted in Figure 2, are seg-
mented into three parts: (i) the outer layer represents the
skin surface, constructed from Ecoflex 00-10 with an elastic
modulus of 37 kPa, mimicking the softness of actual skin [47];
(ii) a central cavity filled with mixed viscous liquid (Elmer’s
Clear Glue, Elmer’s Magical Liquid Slime Activator) to em-
ulate soft tissue and lubrication between skin and underlying
muscle; (iii) a silicone lump, also of Ecoflex 00-10 material
and available in three sizes of 10, 15, and 25 mm in diameter
to reflect the size range of thyroid cancer [48].

Regardless of diameter, each lump maintains a uniform
height of 11 mm. The lumps remain subtly detectable to the
touch as slight protrusions on the phantom’s surface. They are
colored to match the surrounding tissue, making them visually
indiscernible, thereby necessitating hands-on interaction for
size differentiation.

B. Moving Platform

The experimental platform that moves the tissue phantom
under a passive hand is shown in Fig. 3. We used an XYZ
translation stage (FSL40, Fuyu Technology Co., China) com-
posed of three Nema 17 stepper motors (BE069-3, Befenybay)
that provide a resolution of 0.011625 mm per step. To address
the challenge of motor vibration, the microstepping method
was applied, optimizing resolution and dampening vibration
noise through the utilization of three stepper motor drivers
(DM542T, OMC Corporation Limited, China). These drivers
interface with an Arduino Due microcontroller using the
AccelStepper package, and the Due communicates with the
host computer via Pyserial. The vertical linear stage connects
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Fig. 3. Experiment setup. (a) System overview. (b) Top view. (c) Side view.
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Fig. 4. Finger tracking procedure. The top-left image represents the
original RGB format, while the top-right image illustrates the transformed
YUV format. The bottom-left image depicts the mask image, exclusively
encompassing the contour of the green sticker. The bottom-right image is
designated as the tracked image, containing a red rectangle; the center of this
rectangle symbolizes the precise position of the finger.

to a support structure with a rubber damper layer incorporated
to mitigate remaining vibrations. An ATI Mini 45 force sensor
is integrated at the bottom of the tissue phantom to record the
force value.

C. Trajectory Generation

Positioned above the phantom, a 720p RGB camera (Log-
itech BRIO webcam, Logitech)serves to capture the finger’s
movement during the active touch procedure. We limited
camera capture to 30 fps, which we deemed adequate to
capture the characteristics paths such as that in Fig 5(b),
in order to minimize system computational demands. In the
implementation of hand tracking shown in Fig 4, the RGB
camera serves dual functions: (1) documenting an active
palpation exam for future visual feedback and (2) tracking
a designated green sticker affixed to the fingernail, thereby
capturing finger position during said exam. Utilizing the YUV
colorspace tracking algorithm, aided by OpenCV, it surpasses

the noise-sensitive RGB color model in stability under varied
lighting conditions.

Transitioning from 2D pixel coordinates to 3D world co-
ordinates presents a significant challenge, particularly in the
absence of stereo camera data and concomitant depth infor-
mation. However, given the fixed camera’s pose relative to
the phantom and the nature of the finger’s sliding movement,
an alternative method was devised. The conversion from 2D
pixel coordinates to 2D world coordinates (in millimeters)
was undertaken using intrinsic parameters to rectify pixel
coordinate distortions and extrinsic parameters to translate
the corrected 2D pixel coordinates. This transformation was
calibrated through a standardized process involving an 8x8
printed chessboard as a reference object.

Active palpation of tissue phantoms are recorded with 720p
video at a rate of 30 frames per second (FPS). Subsequently,
this video is transmitted to the computer and decoded using
the aforementioned finger tracking methodology to obtain a
waypoint array consisting of approximately 900 data points
per 30 seconds of video. From these waypoints, an estimated
raw trajectory is generated through linear interpolation. This
procedure is outlined in Fig 5 (a).

D. Trajectory Smoothing

In order to provide synchronous visuo-haptic feedback for a
pre-recorded video, several primary constraints are observed.
Firstly, the purpose of this trajectory is to emulate the haptic
feedback correlating to the video’s movement; the trajectory is
thus pre-determined by the video content, though adaptations
or smoothing may be necessary to accommodate hardware
capabilities. Secondly, to augment efficiency and preclude
delays attributed to computer performance, the playback of
the video via OpenCV and the execution of the trajectory
are separated. Consequently, the smoothed trajectory must
be generated and imported into the microcontroller prior to
the video’s playback. Thus, the number of data points must
be constrained due to the local memory limitations of the
microcontroller, which might affect real-time performance.
Thirdly, even with limited waypoints for smoothed trajectories,
the smoothed trajectory must closely align with the original
to synchronize with the video movement without noticeable
lag. Finally, the duration of the smoothed trajectory must
correspond precisely with the video’s duration. After extensive
testing of various algorithms, a low pass filter (Gaussian filter,
sigma = 8) was chosen to smooth this rough trajectory without
discernible lag. Fig. 5 (b) - (d) compare the raw trajectory
collected from a typical video recording and actual motor
trajectory.

E. Visio-haptic Synchronization

Upon importing the smoothed trajectory matrix into the
Arduino Due via Pyserial, the subsequent step involves execut-
ing this trajectory and concurrently playing back the original
video on the monitor (see Fig. 5 (a)). To realize this objective,
the Arduino sends a trigger message to the Python loop and
initiates the stepper motors when the last data point is received.
When the Python loop receives this trigger message, the video
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Fig. 5. Trajectory smoothing and execution (a) System architecture: Render the visual and tactile sensations from the local ”Tutor” in a pre-recorded video
to the remote ”Practitioner”. (b) Trajectory Visualization on a 2D Plane: A green dot denotes the starting point, while a red star indicates the end point.
The gray line illustrates the raw trajectory, generated from tracking the green dot. The blue line depicts the actual trajectory derived from the stepper motor
encoder, executed by a Feed-forward + Feedback proportional controller. (c) Graph of X Position vs. Time: This is represented over an initial duration of
approximately 8 seconds. (d) Graph of X Velocity vs. Time: This is showcased within an initial span of around 8 seconds.

is displayed via OpenCV. Two major challenges emerge in
this context. The first challenge pertains to synchronizing the
commencement of the video with the stepper motors. The
second challenge revolves around ensuring that the duration
of the video aligns with the duration of the stepper motor
movement. In addressing the first challenge, four timestamps
were employed to investigate and quantify the system’s delay.
A subsequent discovery revealed a consistent delay between
two specific timestamps due to Python taking approximately
50 milliseconds to display the first video frame upon receiving
the trigger message. A manual 50 milliseconds delay was
then integrated into the Arduino loop to synchronize the
commencement of the stepper motor with the video.

The second challenge involves aligning the actual movement
duration with the smoothed trajectory duration, a discrepancy

that might lead to asynchronicity between touch and visual
feedback. This misalignment occurs despite the matched du-
ration of the smoothed trajectory and the video. To remedy this
problem, a classical feedforward plus feedback speed control
system encompassing a proportional controller (Kp = 10) was
implemented to manage the trajectory for the time asynchrony
issue. Additional timestamps were also used to verify and
illustrate the synchronization between the last video frame’s
appearance and the trajectory’s termination in the Arduino
loop.

F. Indentation Force characterization

The current iteration of our experimental platform provides
2D position control, not force control, of haptic stimuli.
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Fig. 6. Indentation Force characterization. (a) Trajectory X Over Time: The
top graph displays the x-axis position of the lead author’s finger as it slides
back and forth over a tissue phantom lump. (b) Active vs Passive (Lateral
Force Data): The middle graph presents the lateral force values, with the blue
line representing active touch and the orange line depicting passive touch
recordings. (c) Active vs Passive (Normal Force Data): The bottom graph
depicts the normal force values for both active and passive touch.

Therefore, we chose to limit our experiments to size detection
instead of characteristics such as stiffness which would be
overwhelmingly reliant on force feedback. Recognizing the
pivotal role of force in all tactile perception, however, we char-
acterized interaction force for the lead author’s finger under
both active and passive interaction with a tissue phantom lump.
Force data was collected with a 6-axis sensor (ATI Mini45)
placed directly under the phantom, sampled at 60 Hz and low
pass filtered at 5 Hz to mitigate signal noise. Representative
data is shown in Figure 6; variations in force were similar
across both conditions. Force was slightly offset to smaller
values under the passive condition, likely due to the finger
passively resting on top of the stimulus instead of actively
pressing down. As the finger slides over an embedded lump,
it will gently rise and fall, transmitting haptic information
through motion as well as force.

III. PSYCHOPHYSICAL EXPERIMENT

The objective of this experiment is to investigate whether
the diagnostic outcome from a palpation task remains accurate
without any active movement. We also explored whether
phenomena such as the rubber hand illusion and kinesthetic

illusion can be elicited by administering continuous haptic
feedback to the subject’s static concealed passive hand, con-
currently with the display of a synchronously moving virtual
hand on the screen.

A total of eighteen participants (11 men and 7 women,
aged between 18 and 45) were enlisted for this experiment.
All participants possessed a healthy physique and normal
sensation, with right-hand dominance. Most participants were
engineering students at Texas A&M University, and all lacked
prior palpation experience or theoretical knowledge pertain-
ing to general physical examination. This experiment was
approved by the Institutional Review Board of Texas A&M
University (IRB2022-0798D), and all participants signed the
informed consent form prior to participation and received
compensation for their involvement.

Our experimental protocol was structured into two distinct
sessions. The initial session served as a training phase, de-
signed to familiarize participants with the entire setup. Follow-
ing this, the second session constituted the formal experimental
phase. Detailed descriptions of each phase are provided below.

A. Session 1: Training and Trajectory Capture

The first session was primarily designed to facilitate par-
ticipants’ familiarity with both the rubber tissue phantom
and the overall experimental setup. Near the end of this
training procedure, we also captured video of active movement
trajectories, unique to each participant. This session consisted
of three specific tasks detailed below.

Task 1: Participants were presented with three tissue phan-
toms all at once, each containing lumps of varying sizes, and
were required to arrange them from left to right based on size
using active touch. This task aimed to confirm the participants’
ability to distinguish the three different lump sizes detailed in
section II-A.

Task 2: Participants were instructed to place their right
hand on the apparatus, equipped with adjustable arm and
wrist support. A demonstration of ”passive touch,” in which
they held still while a phantom moved under their hand,
was provided to acquaint them with the palpation process, in
preparation for the subsequent task.

Task 3: Participants affixed a green sticker to their fingernail
and were instructed to keep their hand in a specific two-finger
posture, pictured in Fig. 4, for a duration of 30 seconds. Start-
ing from a marked point (a black dot), they actively explored
the lump on each rubber tissue phantom. This exploration was
recorded as video, with the stipulation that the touch pattern
consist solely of sliding touch, excluding tapping or rapid
shaking. Three videos were recorded for each participant, to
be utilized in the subsequent session.

B. Session 2: Participant Performance Across Conditions

Our experimental session was divided across four condi-
tion blocks, in order to observe diagnostic performance of
participants under various active and passive touch scenarios
detailed in Fig 7. Conditions 1 and 2 were chosen to compare
active versus passive touch conditions, both without video
feedback. Conditions 2 and 3 compared performance across
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Fig. 7. Four conditions. i) Condition 1 Active touch: Participants were
instructed to freely explore the hidden tissue phantom. ii) Condition 2 Passive
touch without video: Participants kept their hand stationary, allowing the
robotic platform to move the phantom, with a black screen displayed on the
monitor. iii) Condition 3 Passive touch while viewing other hand: Similar to
condition 2, but with a corresponding video from the experimenter displayed
on the monitor. iv) Condition 4 Passive touch while viewing own hand: As
in conditions 2 and 3, but the video from task 3 in session 1 was shown,
with the robotic platform’s trajectory altered to match the participant’s hand
movement.

passive presentation with the addition of visual feedback,
both employing active paths recorded previously of the lead
author’s hand while touching the phantom. Finally, conditions
3 and 4 compared performance when presented visuo-haptic
playback of an ”other” hand (the lead author’s) versus that of
one’s own hand recorded during the training session.

The four condition blocks were presented in pseudo-random
order. Across all experimental blocks, participants listened to
white noise on headphones to minimize auditory distraction
from the platform motors. A curtain obscured the robotic
platform and their own hand from view.

Each block consisted of trials also presented in a pseudo-
random order, wherein a tissue phantom embedded with one of
three different lump sizes was placed on the robotic platform’s
end-effector. Each lump size was presented twice, for a total
of 6 trials per block. During the trial, participants felt the
phantom for 30 seconds, either actively or passively, with the
goal of identifying the lump size. Subsequent to each trial,
they were asked to identify which of the three lump sizes they
felt, rate their confidence in their response (rated on a 5-point
Likert scale), and rate the perceived difficulty in identifying
the embedded lump sizes (also a 5-point Likert scale).

C. Assessment of Rubber Hand Illusion

Following conditions 3 and 4, in which participants pas-
sively felt and watched a palpation, an additional questionnaire
was administered to evaluate the extent of their sense of
ownership of the hand observed in the video. The employed
questionnaire is a modified variant of the standard RHI (Rub-
ber Hand Illusion) questionnaire as referenced in sources [24]–

TABLE I
RUBBER HAND ILLUSION QUESTIONNAIRE

No. Statement
Q1 I felt as if I was looking at my own hand.
Q2 It seems as if my own hand is moving.
Q3 It no longer felt like my right hand belonged to me.
Q4 It felt as if I had no longer a right hand, as if my right hand

had disappeared.
Q5 I felt as if the hand on the screen was controlling me.
Q6 I felt as if I was controlling the hand on the screen.
Q7 It seemed as if the hand on the screen had a will of its own.
Q8 It seemed my right hand was in the location where the hand

on the screen was.
Q9 It seemed as if the movement I was feeling came from

somewhere between my own hand and the hand on the screen.
Q10 It seems like I could not really tell where my right hand was.

[31], [34]. Responses were elicited from participants using a 5-
point Likert scale, where a score of 1 corresponds to ”strongly
disagree” and 5 to ”strongly agree.” The questionnaire state-
ments are listed in Table I.

Within this questionnaire, items Q1 to Q4 pertain to sensa-
tions of ownership and identification with the observed hand.
Questions Q5 to Q7 address the feeling of agency and control,
while Q8 to Q10 are concerned with spatial perception and
proprioceptive drift. The presentation order of these questions
was randomized for participants.

IV. RESULTS

A. Lump Size Discrimination

For active touch (condition 1) in the subsequent formal
experimental session, each participant was provided with only
one lump size at a time and was required to classify it as small,
medium, or large. The average accuracy in this condition
was 83.3%, indicating that the task of size discrimination,
when isolated, presents a more considerable challenge than
simultaneous comparison used during training. Nonetheless,
this accuracy rate was higher than that seen in all the passive
conditions, which had overall accuracies of 75.0%, 71.3%,
and 69.4% for Conditions 2-4, respectively. Overall accuracy
of identification for different lump sizes was 95.1% for small,
56.9% for medium, and 72.2% for large lumps.

For all four presentation conditions, the discriminatory
performance results are shown as confusion matrices in Fig. 8
(a). As lump discrimination is binomial (correct/incorrect for
each trial), we performed binary logistic regression to assess
the overall impacts of lump size and condition on identification
accuracy. We found a highly significant effect of lump size
(Wald Chi-Square = 42.4, df = 2, p < 0.001), and a marginally
significant effect of condition (Wald Chi-Square = 7.3, df = 3,
p = 0.063).

Thereafter, we conducted pairwise comparisons employing
the Wilcoxon signed-rank test with a Holm-Bonferroni cor-
rection for post-hoc analysis. Differences in accuracy were
significant between all sizes: large versus medium (p = .0068),
large versus small (p < 0.001), and medium versus small
(p < 0.001). Although our regression test indicated only
marginal significance of Condition, potential impact of passive
versus active is suggested by significant differences only
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Fig. 8. Accuracy performance. (a) Confusion Matrix. (b) Average accuracy percentages across sizes were 95.1% in small size, 56.9% in medium size, and
72.2% in large size. (c) Average accuracy percentages across conditions were 83.3% in condition 1, 75.0% in condition 2, 71.3% in condition 3, 69.4% in
condition 4.
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Fig. 9. Confidence level. (a) Least Square linear regression analysis of the accuracy of performance in relation to the corresponding average confidence
levels. R-squared = 0.76. (b) Average confidence levels across sizes were 4.2 in small size, 3.6 in medium size, and 4.0 in large size. (c) Average confidence
levels across conditions were 4.2 in condition 1, 4.0 in condition 2, 3.8 in condition 3, 3.8 in condition 4.

between Active versus Condition 3 (p = 0.035) and Active
versus Condition 4 (p = 0.017). Results are summarized in
Fig. 8 (b)-(c).

B. Participant Confidence and Perceived Difficulty

TABLE II
AVERAGE CONFIDENCE LEVELS (MEAN ± SD) FOR DIFFERENT SIZES

AND CONDITIONS

Small Medium Large

Condition 1 4.33±0.52 3.78±0.45 4.39±0.55
Condition 2 4.28±0.48 3.64±0.50 4.03±0.47
Condition 3 4.09±0.50 3.56±0.49 3.82±0.48
Condition 4 4.00±0.46 3.47±0.52 3.97±0.51

Judgements of perceived difficulty were remarkably similar
across all conditions and lump sizes, suggesting that this
was either unaffected by experimental conditions, or not a
meaningful question to participants. In contrast, Confidence

levels varied more widely and are summarized in Table II,
with 1 corresponding to ”Extremely Unconfident” and 5 to
”Extremely Confident.”

On the whole, participants’ confidence hovered near the
value of 4, corresponding to ”Confident.” Participants con-
sistently exhibited diminished confidence when faced with
medium-sized lumps or under the visio-haptic passive condi-
tions 3 and 4, which also correspond to lower accuracy rates.
To elucidate the correlation between confidence and accuracy
performance, a linear regression model (see Fig. 9 (a)) was
applied to align the compare confidence data from Table II
with average accuracies, demonstrating an R-squared value of
0.76.

Chi-squared tests demonstrated that lump size once again
has a highly significant impact on Confidence ratings (Chi-
square = 34.96, df = 8, p−value < 0.001), but Condition had
no effect (Chi-square = 14.84, df = 12, p− value = 0.2503).
Post-hoc analysis using the Wilcoxon signed-rank test with
Holm-Bonferroni correction showed that only the medium size



9

Q1 Q2 Q3 Q4

Strongly
disagree

Disagree
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Agree

Strongly
Agree

*

Ownership
Subject's hand Researcher's hand

Fig. 10. Questionnaire results: ownership. First 4 statements from the
questionnaire: Q1. “I felt as if I was looking at my own hand.” Q2. “It seems
as if my own hand is moving.” Q3. “It no longer felt like my right hand
belonged to me.” Q4. “It felt as if I had no longer a right hand, as if my right
hand had disappeared.”

Q5 Q6 Q7

Strongly
disagree

Disagree

Neutral

Agree

Strongly
Agree

Agency
Subject's hand Researcher's hand

Fig. 11. Questionnaire results: agency. 5th to 7th statements from the
questionnaire: Q5. “I felt as if the hand on the screen was controlling me.”
Q6. “I felt as if I was controlling the hand on the screen.” Q7. “It seemed as
if the hand on the screen had a will of its own.”

resulted in significantly lower confidence ratings than the small
(p = 7.99× 10−7) and large (p = 0.0015) lump sizes.

C. Rubber Hand and Kinesthetic Illusions

Results from the rubber-hand illusion questionnaire are
depicted in Figs. 10–12. We applied Wilcoxon signed-rank
tests to each questionniare result across the two passive
conditions with visual feedback (Conditions 3 and 4). This
analysis demonstrated a single significant difference between
the two conditions for the first question (p = 0.042), indicating
that observing one’s own hand (condition 4) versus another’s
hand (condition 3) did elicit a distinct impact on the partici-
pants’ experience. Beyond this, no other significant differences
were identified for the remaining eight questions between the
two conditions, suggesting that participants harbored similar

Q8 Q9 Q10

Strongly
disagree

Disagree

Neutral

Agree

Strongly
Agree

Proprioceptive drift
Subject's hand Researcher's hand

Fig. 12. Questionnaire results: proprioceptive drift. 8th to 10th statements
from the questionnaire: Q8. “It seemed my right hand was in the location
where the hand on the screen was.” Q9. “It seemed as if the movement I
was feeling came from somewhere between my own hand and the hand on
the screen.” Q10. “It seemed like I could not really tell where my right hand
was.”

experiences concerning these facets of the RHI experience,
irrespective of the differing hands showcased in the videos.

V. DISCUSSION

In our participant study, we used a custom robotic platform
to explore two primary questions. Firstly, will a person’s tissue
examination performance be affected by the absence of their
own active movement, and are there presentation conditions
that can mitigate losses in performance? Additionally, can the
rubber hand illusion and kinesthetic illusion be simultaneously
induced by rendering synchronized visuo-tactile feedback?
This second question affected the first, as we wished to explore
if RHI could improve immersiveness and therefore perceptual
performance.

A. Passive Palpation Performance

During the training session, all 18 participants could per-
fectly distinguish the three lumps when actively felt side-by-
side. During the experimental active touch condition, however,
the average accuracy of size identification was 83.3%. This
decline in accuracy between the training and experimental
session can be ascribed to increased difficulty in distinguishing
sizes in absence of a reference; during experiments, only a
single concealed tissue phantom is accessible at one time,
as opposed to all three simultaneously during training. Fur-
thermore, identification and confidence for the medium-sized
lump was significantly lower than that for the small and large
lumps. indicating that without reference sizes, participants
struggle more to identify lump size from nearest neighbor
sizes. Regardless, active performance overall was superior to
that for all passive conditions.

Video feedback, contrary to our expectations, resulted in
significantly worse performance for both conditions 3 and
4 compared to active touch. We anticipated that video as-
sistance could provide additional information about relative
motion and possibly enhance a sense of immersion through a
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kinesthetic illusion, thereby enhancing diagnostic accuracy and
confidence. Instead, visual feedback might distract participants
from focusing on haptic sensations, or visual feedback that
shows active hand motion that differs from actual lack of
passive hand motion may increase confusion. Similar perfor-
mance between conditions 1 (active) and 2 (passive, no visual)
indicate that our current method of haptic display provides
adequate information about relative motion through haptic
channels alone; visual feedback of relative motion may still
be required for passive haptic interfaces that provide reduced
haptic feedback.

A comparative analysis between conditions 3 and 4 gives
insights into the palpation strategies for passive touch. In
condition 3, the participant views and experiences active
exploration of the lead author’s hand, while in condition 4
they view playback of their own hand recorded during the
training session. Despite the less familiar-looking hand in
condition 3, participants performed insignificantly better than
when viewing playback of their own hand. While this again
ran contrary to our expectations, we suspect this is due to
non-optimal exploration strategies employed by the novice
participants during their training session. The recorded motion
and video used in condition 4 was from the lead author who
had developed practiced and increasingly optimized search
strategies during experimental development, highlighting the
importance of expertise in specialized haptic tasks.

B. Ownership and Kinesthetic Illusions

Traditional techniques for inducing an ownership illusion,
i.e. rubber hand illusion, depend on synchronous motion and
stimulation of the visible artificial hand with the hidden hand,
driven either by the participant or the experimenter [27],
[28]. Kinesthetic illusions, in which a stationary hand feels as
though it moving, can be generated through isolated tendon
vibration, touch, or vision. Our setup instead leveraged syn-
chronous haptic feedback to the stationary hand with visual
feedback of the moving hand in an attempt to induce both
illusions. Findings from our illusion questionnaire indicate
presence of both ownership and kinesthetic illusions, specif-
ically in the agreement to Questions 2: ”It seems as if my
own hand is moving” and 8: ”It seemed my right hand
was in the location where the hand on the screen was.”
Intriguingly, participants also reported high agreement with
question 9: ”It seemed as if the movement I was feeling came
from somewhere between my own hand and the hand on the
screen.” This observation represents an intermediate stage of
proprioceptive drift, possibly attributable to the more than 40
cm separation between the subject’s hidden static hand and
the visible moving virtual hand, leading to confusion. The
only significantly different questionnaire response between the
passive video conditions was for question 1: ”I felt as if I was
looking at my own hand,” indicating that participants could
indeed identify if the video hand was actually theirs. The
otherwise similar questionnaire outcomes across conditions
affirm that individuals can feel some embodiment of the video
hand even when they are stationary and observing someone
else’s hand, despite no increase in diagnostic performance.

C. Implications for Future Passive Displays

Our initial study looked at the impact of supplemental visual
display to enhance passive perception when touching a real
object. While those objects were palpable tissue phantoms
in our current study, this work could be extended to any
environment in which a user may wish to monitor haptic
sensations collected by a robot or another person. For example,
we envision applications in learning or monitoring correct tool
usage and dexterous manufacturing tasks. Eventually, it is not
feasible to move real objects relative to the passive hand;
rather, we anticipate that captured haptic data can be displayed
through a haptic glove or other display. Further work is needed
to understand the role of visual feedback in these contexts, as
well as impact of additional features such as passive hand
posture and motion.

D. Limitations

Several limitations within our study warrant resolution in fu-
ture work. Primarily, our platform is limited in the sensations it
can display due lack of vertical motion and force control. The
2D nature of the display limits trackable movement to sliding
touch, and lack of force-control prevents accurate display of
variable stiffness sensations. Future research encompassing a
broader range of haptic features, including texture, stiffness,
location, shape, and mobility, require additional dimensions of
display and hand posture.

There were also limitations in our experimental protocol.
Absolute lump size detection was difficult for our partici-
pants, and future work may detect more nuanced performance
differences using comparative tasks, such as choosing which
lump is larger. Regarding video feedback, we did not record
participants’ skin color or the degree to which their hand
matched the physical appearance of the ”other” hand in con-
dition 3. Potential mismatch in hand color or shape may have
affected strength and onset time of RHI [49]. Future research
could mitigate this problem by requiring everyone to wear
gloves or using only grayscale video, potentially isolating and
reducing potential mismatch of hand appearance. Additionally,
we did not have an experimental condition in which visual
and tactile feedback were asynchronous; therefore, evaluating
the extent of advantages conferred by the ownership and
kinesthetic illusions becomes challenging. Although agency
and ownership were compared across conditions 4 and 3
(own vs ”other” hand), an asynchronous condition between
visual and tactile feedback could give additional insight into
contribution of the illusions to task performance itself.

VI. CONCLUSION

This study explored different passive presentation tech-
niques for communicating an active palpatation task, using
a robotic platform that can provide a passive hand with visual
and haptic feedback recorded from an active hand. While we
observed slight decreases in perceptual acuity and confidence
across all passive presentation conditions, many participants
did experience sizable ownership and kinesthetic illusions
from synchronized visio-haptic feedback during passive pre-
sentation. Our results suggest promise for creating a sense
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of immersion to a passive viewer of active hands-on experi-
ences, although additional methods for improving diagnostic
performance under passive conditions must be explored. Going
forward, we will explore performance and immersion under a
broader range of tasks and passive conditions.

ACKNOWLEDGMENT

The funding for this study is provided by the National
Science Foundation according to Grant 2222918. The authors
extend a special thanks to the physicians at Houston Methodist
for their consultation and expertise in neck palpation exams
and methods for palpation training.

REFERENCES

[1] D. A. Davis, M. A. Thomson, A. D. Oxman, and R. B. Haynes,
“Changing physician performance: a systematic review of the effect of
continuing medical education strategies,” Jama, vol. 274, no. 9, pp. 700–
705, 1995.

[2] P. Hyman, “The disappearance of the primary care physical exami-
nation—losing touch,” JAMA Internal Medicine, vol. 180, no. 11, pp.
1417–1418, 2020.

[3] S. Maloney, M. Storr, S. Paynter, P. Morgan, and D. Ilic, “Investigating
the efficacy of practical skill teaching: a pilot-study comparing three
educational methods,” Advances in Health Sciences Education, vol. 18,
pp. 71–80, 2013.

[4] A. M. Okamura, “Haptic feedback in robot-assisted minimally invasive
surgery,” Current opinion in urology, vol. 19, no. 1, pp. 102–107, 2009.

[5] C. Pacchierotti, D. Prattichizzo, and K. J. Kuchenbecker, “Cutaneous
feedback of fingertip deformation and vibration for palpation in robotic
surgery,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 2,
pp. 278–287, 2015.

[6] M. Pompilio, N. D’Aurizio, T. L. Baldi, L. Franco, G. Gabriele, and
D. Prattichizzo, “A novel wearable sensing device enabling remote
palpation,” in 2024 IEEE Haptics Symposium (HAPTICS). IEEE, 2024,
pp. 149–156.

[7] Laerdal, “SimMan 3G,” 2020, accessed: May 17, 2020.
[Online]. Available: https://laerdal.com/us/products/simulation-training/
community-cpr/

[8] L. He, N. Herzig, S. de Lusignan, L. Scimeca, P. Maiolino, F. Iida, and
T. Nanayakkara, “An abdominal phantom with tunable stiffness nodules
and force sensing capability for palpation training,” IEEE Transactions
on Robotics, vol. 37, no. 4, pp. 1051–1064, 2020.

[9] J. D’Abbraccio, L. Massari, S. Prasanna, L. Baldini, F. Sorgini,
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